
INTRODUCTION TO SAAS MAKER™

Page 1

 SaaS Maker™ Developer’s Guide
 Build & deploy software-as-a-service applications

www.saasmaker.com

July 2013

http://www.saasmaker.com/

INTRODUCTION TO SAAS MAKER™

Page 2

Contents

Introduction to SaaS Maker™ __ 3

Getting Started With SaaS Maker __ 5

Developer Console__ 9

The SaaS Maker Factory__ 14

Preview Mode ___ 24

Report Designer __ 28

SaaS Maker Open Platform API __ 32

Conclusions ___ 57

APPENDIX 1: SaaS Maker™ Feature List ___ 58

INTRODUCTION TO SAAS MAKER™

Page 3

Introduction to SaaS Maker™

2ÈÈ2ɯ,ÈÒÌÙɯÐÚɯÈÕɯÖÕÓÐÕÌɯÛÖÖÓÒÐÛɯÈÕËɯ×ÓÈÛÍÖÙÔ-ÈÚ-È-ÚÌÙÝÐÊÌɯȹ/ÈÈ2ȺɯÍÖÙɯÙÈ×ÐËÓàɯÊÙÌÈÛÐÕÎɯÈÕËɯ

ËÌ×ÓÖàÐÕÎɯÉÜÚÐÕÌÚÚɯÚÖÍÛÞÈÙÌɯÚàÚÛÌÔÚɯÖÕɯÛÏÌɯÊÓÖÜËȭɯɯ(ÛɯÍÌÈÛÜÙÌÚɯ×ÖÐÕÛ-ÈÕË-ÊÓÐÊÒɯÛÖÖÓÚɯÛÖɯÙÈ×ÐËɯ

×ÙÖÛÖÛà×ÌȮɯÉÜÐÓËɯÈÕËɯËÌ×ÓÖàɯÈ××ÓÐÊÈÛÐÖÕÚɯÞÐÛÏÖÜÛɯ×ÙÖÎÙÈÔÔÐÕÎȭɯ3ÏÌɯ2#*ɯÈÕËɯÖ×ÌÕɯ /(ɯÔÈÒÌɯ

ÐÛɯÌÈÚàɯÛÖɯÞÙÐÛÌɯÈËË-ÖÕɯÔÖËÜÓÌÚɯÍÖÙɯÕÌÞɯÍÜÕÊÛÐÖÕÈÓÐÛàȮɯÈÕËɯÛÖɯÐÕÛÌÎÙÈÛÌɯÞÐÛÏɯÖ×ÌÕ-ÚÖÜÙÊÌȮɯ

ÛÏÐÙË-×ÈÙÛàȮɯÈÕËɯÓÌÎÈÊàɯÚÖÍÛÞÈÙÌɯÚàÚÛÌÔÚȭɯ

3ÏÌɯ2ÈÈ2ɯ,ÈÒÌÙɯ×ÓÈÛÍÖÙÔɯÔÈÕÈÎÌÚɯÊÏÈÓÓÌÕÎÐÕÎɯÛÈÚÒÚɯÛÏÈÛɯÞÖÜÓËɯÖÛÏÌÙÞÐÚÌɯÕÌÌËɯÛÖɯÉÌɯ

ÌÕÎÐÕÌÌÙÌËɯÈÛɯÎÙÌÈÛɯÌß×ÌÕÚÌɯÐÕÛÖɯÌÝÌÙàɯÚÖÍÛÞÈÙÌɯÈ××ÓÐÊÈÛÐÖÕȯɯÚÐÕÎÓÌɯÚÐÎÕ-ÖÕȮɯÈ××ÓÐÊÈÛÐÖÕɯÔÜÓÛÐ-

ÛÌÕÈÕÊàȮɯÍÌËÌÙÈÛÌËɯÚÌÈÙÊÏȮɯÙÖÓÌ-ÉÈÚÌËɯÚÌÊÜÙÐÛàȮɯÞÖÙÒÍÓÖÞȮɯÙÌ×ÖÙÛÐÕÎȮɯÈÕËɯÖÛÏÌÙɯÚÏÈÙÌËɯÚÌÙÝÐÊÌÚȭɯɯ

3ÏÌɯȿ.ÕÌ-ÊÓÐÊÒɯ2ÌÓÓɀɯÍÌÈÛÜÙÌɯÔÈÒÌÚɯÐÛɯÌÈÚàɯÛÖɯ×ÜÉÓÐÚÏɯÈ××ÚɯÍÖÙɯÚÈÓÌȰɯËÌÝÌÓÖ×ÌÙÚɯÔÌÙÌÓàɯÕÌÌËɯÛÖɯ

ÚÌÛɯÈɯ×ÙÐÊÌȮɯÊÓÐÊÒɯÈɯÉÜÛÛÖÕȮɯÈÕËɯÛÏÌÐÙɯÈ××ɯÐÚɯÐÕÚÛÈÕÛÓàɯÈÝÈÐÓÈÉÓÌɯÛÖɯÛÏÌɯÞÖÙÓËȭɯ

 ɯ2ÈÈ2ɯ,ÈÒÌÙɯ%ÈÊÛÖÙàɯÎÜÐËÌÚɯÚÖÍÛÞÈÙÌɯËÌÝÌÓÖ×ÌÙÚɯÛÏÙÖÜÎÏɯÛÏÌɯÚÛÌ×ÚɯÛÖɯÐÕÚÛÈÕÛÐÈÛÌɯÈÕɯ

ÌÕÛÌÙ×ÙÐÚÌ-ÊÓÈÚÚȮɯÊÓÖÜËɯÊÖÔ×ÜÛÐÕÎɯÈÙÊÏÐÛÌÊÛÜÙÌɯÛÏÈÛɯ×ÙÖÝÐËÌÚɯÔÜÊÏɯÖÍɯÛÏÌɯÛÈÙÎÌÛɯÚÖÍÛÞÈÙÌɅÚɯ

ÍÜÕÊÛÐÖÕÈÓÐÛàȭɯ(ÕɯÚÖÔÌɯÊÈÚÌÚȮɯ2ÈÈ2ɯ,ÈÒÌÙɯËÌÓÐÝÌÙÚɯƕƔƔǔɯÖÍɯËÌÝÌÓÖ×ÔÌÕÛɯÍÜÕÊÛÐÖÕÈÓÐÛàɯÞÐÛÏɯÕÖɯ

ÈËËÐÛÐÖÕÈÓɯ×ÙÖÎÙÈÔÔÐÕÎɯÕÌÌËÌËȮɯÚÈÝÐÕÎɯÔÖÕÛÏÚɯÖÙɯàÌÈÙÚɯÖÍɯÞÙÐÛÐÕÎɯÊÖËÌɯÍÙÖÔɯÚÊÙÈÛÊÏȭɯɯ!ÈÚÌËɯ

ÖÕɯÜÚÌÙɯÌß×ÌÙÐÌÕÊÌɯÛÖɯËÈÛÌȮɯÚÖÍÛÞÈÙÌɯËÌÝÌÓÖ×ÌÙÚɯÊÈÕɯÛà×ÐÊÈÓÓàɯÉÜÐÓËɯÈÕËɯËÌ×ÓÖàɯÚÖÍÛÞÈÙÌɯÐÕɯÈɯ

ƗƔǔɯȹÚÈÝÐÕÎɯƛƔǔȺɯÖÍɯÛÏÌɯÛÐÔÌɯÈÕËɯÊÖÚÛɯÈÚÚÖÊÐÈÛÌËɯÞÐÛÏɯÛÙÈËÐÛÐÖÕÈÓɯÚÖÍÛÞÈÙÌɯËÌÝÌÓÖ×ÔÌÕÛȭɯɯ

2ÈÈ2ɯ,ÈÒÌÙɯÐÚɯÖÍÍÌÙÌËɯɁÈÚ-È-ÚÌÙÝÐÊÌɂȮɯÔÌÈÕÐÕÎɯÛÏÈÛɯàÖÜɯÊÈÕɯÜÚÌɯÐÛɯÖÕ-ËÌÔÈÕËɯÖÝÌÙɯÛÏÌɯ(ÕÛÌÙÕÌÛɯ

ÖÙɯÐÕÛÙÈÕÌÛɯÞÐÛÏɯÕÖɯÕÌÌËɯÛÖɯÌÝÌÙɯÐÕÚÛÈÓÓȮɯÜ×ÎÙÈËÌȮɯÖÙɯÏÖÚÛɯÈÕɯÈ××ÓÐÊÈÛÐÖÕȭɯ3ÏÌɯ×ÓÈÛÍÖÙÔɯÔÈÕÈÎÌÚɯ

INTRODUCTION TO SAAS MAKER™

Page 4

ÜÕËÌÙÓàÐÕÎɯÊÖÔ×ÓÌßÐÛÐÌÚɯÖÍɯÈ××ÓÐÊÈÛÐÖÕÚȮɯÚÖɯÛÏÌÙÌɯÐÚɯÕÖɯÕÌÌËɯÍÖÙɯËÌÝÌÓÖ×ÌÙÚɯÛÖɯ×ÙÖÝÐÚÐÖÕɯÈÕËɯ

ÊÖÕÍÐÎÜÙÌɯÏÈÙËÞÈÙÌɯÖÙɯËÈÛÈÉÈÚÌÚȭɯ2ÈÈ2ɯ,ÈÒÌÙɯÈÓÐÎÕÚɯÞÐÛÏɯ-(23ɅÚɯËÌÍÐÕÐÛÐÖÕɯÍÖÙɯ×ÓÈÛÍÖÙÔ-ÈÚ-È-

ÚÌÙÝÐÊÌȮɯɁ3ÏÌɯÊÈ×ÈÉÐÓÐÛàɯ×ÙÖÝÐËÌËɯÛÖɯÛÏÌɯÊÖÕÚÜÔÌÙɯÛÖɯËÌ×ÓÖàɯÖÕÛÖɯÛÏÌɯÊÓÖÜËɯÐÕÍÙÈÚÛÙÜÊÛÜÙÌɯ

ÊÖÕÚÜÔÌÙ-ÊÙÌÈÛÌËɯÖÙɯÈÊØÜÐÙÌËɯÈ××ÓÐÊÈÛÐÖÕÚɯÊÙÌÈÛÌËɯÜÚÐÕÎɯ×ÙÖÎÙÈÔÔÐÕÎɯÓÈÕÎÜÈÎÌÚɯÈÕËɯÛÖÖÓÚɯ

ÚÜ××ÖÙÛÌËɯÉàɯÛÏÌɯ×ÙÖÝÐËÌÙȭɂɯɯ(ÕɯÖÛÏÌÙɯÞÖÙËÚȮɯ2ÈÈ2ɯ,ÈÒÌÙɯÔÈÒÌÚɯÐÛɯÚÐÎÕÐÍÐÊÈÕÛÓàɯÌÈÚÐÌÙɯÍÖÙɯ

ËÌÝÌÓÖ×ÌÙÚɯÛÖɯÉÜÐÓËɯÈÕËɯËÌ×ÓÖàɯÉÜÚÐÕÌÚÚɯÈ××ÓÐÊÈÛÐÖÕÚɯÖÕɯÈɯ×ÜÉÓÐÊɯÖÙɯ×ÙÐÝÈÛÌɯÊÓÖÜËɯ

ÐÕÍÙÈÚÛÙÜÊÛÜÙÌȭɯ2ÈÈ2ɯ,ÈÒÌÙɯÏÌÓ×ÚɯËÌÝÌÓÖ×ÌÙÚɯÎÌÛɯÛÏÌÐÙɯÈ××ÚɯÛÖɯÊÖÔ×ÓÌÛÐÖÕɯÔÜÊÏɯÍÈÚÛÌÙɯÈÕËɯ

ÌÈÚÐÌÙɯÉàɯÈÝÖÐËÐÕÎɯÓÈÉÖÙɯÐÕÛÌÕÚÐÝÌɯÚàÚÛÌÔɯËÌÝÌÓÖ×ÔÌÕÛɯÈÕËɯÐÕÛÌÎÙÈÛÐÖÕɯÌÍÍÖÙÛÚȭɯɯ

2ÈÈ2ɯ,ÈÒÌÙɯÖÍÍÌÙÚɯÚÌÝÌÙÈÓɯÚÛÙÈÛÌÎÐÊɯÈËÝÈÕÛÈÎÌÚɯÛÖɯÚÛÈÒÌÏÖÓËÌÙÚȯ

¶ Rapid prototype software on the cloud ɬ Create concept business apps quickly

without writing code. Rapid prototyping can serve as a way to gain customer buy-in or

feedback earlier in the software development process.

¶ Faster time-to-market ɬ Dramatically reduce time -to-market by using the platform as a

launch pad for software engineering efforts. Deliver ing to customers faster. Software

companies can enter new markets faster and accelerate ongoing efforts.

¶ Return on Investment ɬ Software developers can deliver more for substantially less to

customers and improve m argins on fixed price contracts.

¶ Lower costs and risks ɬ Reduce risks because common functions are already tested

over a period of several years.

¶ Higher security and interoperability ɬ SaaS Maker provides a common security

model. If cloud software uses the platform, then it is inherently secured by the

platform's security implementations , such as role-based access control.

¶ Cloud ready ɬ SaaS Maker applications are all inherently ready for the cloud.

Applications can be deployed easily, as part of the end-to-end offering, in either a

public or private cloud.

GETTING STARTED WITH SAAS MAKER

Page 5

Getting Started With SaaS Maker

SETTING UP A SAAS MAKER™ ACCOUNT

Welcome to SaaS Maker! Account setup is required. This is a simple three step process. All required fields

are marked with a red asterisk.

DEVELOPER ACCOUNT SETUP

When you first sign on to SaaS Maker, you will be asked to choose a name for your app and enter your user

name and password. Please make certain to keep your username and password secure. It is recommended

you utilize a highly secure password (a “complex password”) consisting of a combination of uppercase and

lowercase letters as well as numbers and special characters to help prevent unauthorized access.

GETTING STARTED WITH SAAS MAKER

Page 6

ADMINISTRATOR INFORMATION

The second step requires that you complete Administrator Information. Enter your first name, last name,

and email address into the indicated fields. All three fields must be completed to continue. You will also be

required to enter a spam filter code (CAPTCHA) in order to proceed with set-up.

CONFIRMATION

GETTING STARTED WITH SAAS MAKER

Page 7

The final step of the registration process requires confirmation of registration information. After the

Account Information and service Terms of Use have been reviewed under the User Conditions, click the

check box to validate acceptance followed by the FINSH button to complete the registration process.

GET STARTED

The final step in the registration process verifies the URL for the Developer Console and username you will

use to login. Clicking the link below the box containing your information will take you to the login page

where you will provide your credential to start developing your own SaaS Maker™ application.

GETTING STARTED WITH SAAS MAKER

Page 8

You are now at the SaaS Maker™ homepage. Log in is required for access to the Developer Console where

you can access your applications as well as publish Gizmos for public use. Enter your username and

password in the upper right corner of the page. If you forget your password to access the Developer

Console, follow the Forgot password? link to retrieve a new password.

DEVELOPER CONSOLE

Page 9

Developer Console

HOME PAGE

This area of is where you can access the applications you will create with SaaS Maker™. The second link, My

Apps, within the pane on the left of the page will take you to a directory of your applications. The My

Gizmos link is an area where you can upload custom Gizmos created with the SaaS Maker™ SDK. Others

will be able to access Gizmos uploaded here through the Gizmos Store.

DEVELOPER CONSOLE

Page 10

MY APPS

In the My Apps section of the Developer Console, applications that have been created in SaaS Maker™ will

populate here. Creating a new application is as simple as clicking the Create New App icon. You need to

choose a unique name for the application which will become part of the URL associated with the application.

You must also choose how the app will be available to users from the drop down menu.

1. Many Business – This makes the app available to multiple, potentially large organization who

may have several users that will be managed in house.

2. Many People– This places your app in an “open community” where anyone can sign up and use

the application.

3. In-house Only – This creates a “closed community” for your business that must be

administered.

After clicking the Create App! button, the application will be ready for development. Click the Design App

next to application will take you immediately to the application where you can begin designing.

DEVELOPER CONSOLE

Page 11

MY GIZMOS

This area of the Developers Console allows you to upload custom widgets known as Gizmos for use within

SaaS Maker. You will also have the ability to do when logged in as a developer to a SaaS™ Maker application.

When Gizmos are uploaded here, they will be available to other SaaS Maker™ developers to use in their

applications. Methods for using the SDK as well as registering and publishing Gizmos plug-ins is explained

in the SaaS Maker Open Platform API section later in the guide.

DEVELOPER CONSOLE

Page 12

LOGGING INTO YOUR SAAS MAKER™ APPLICATION

This page is customizable, so you can change the appearance as desired. We will discuss how that is done a

little later. Once you log in, you will be taken to the SaaS Maker™ Factory and have access to the tools for

development of your app.

When you return to SaaS Maker™ to make changes to your App, you will need to use your unique URL to

reach the homepage and log in. You should receive an email shortly after you establish your account that

contains the web address for your homepage, as well as your username and password. Please refer to this

email should you misplace or forget your unique URL.

GETTING TO KNOW FEATURES OF SAAS MAKER™

SaaS Maker™ offers a set of powerful and intuitive tools that a developer can implement to create their own

custom applications. Within the core of SaaS Maker™ Factory the components that you will use to create

your application are categorized under icons that allow you to easily navigate between sections as you build

your applications. Each section represents an area of predefined tasks that gives you the power to tailor

your application’s look and feel, while employing the mechanisms that will bring the application to life.

When logging into your SaaS Maker™ application as the developer, you will be taken to the core interface for

application development that is Design Mode. On the left side of the page, you will see icons for nine

different SaaS Maker™ design functions. You can select the different functions by either clicking on the icon,

or using the “next” and “previous” buttons on the top right of the page. Until you are very familiar with SaaS

Maker™, it is generally recommended that you progress through the design functions in order to familiarize

yourself with the application.

DEVELOPER CONSOLE

Page 13

Preview Mode is also a powerful tool that can be used by advanced developers. It provides access to your

master template, and any changes that you make there will be reflected in your app, so you should exercise

caution when making changes in this mode. Preview Mode allows you as the developer to interact with

your application in the same way an end user would. This feature is suitable for experienced developer use,

and those with less experience should generally rely on the wizard to guide them through the app

development process.

THE SAAS MAKER FACTORY

Page 14

The SaaS Maker Factory

The SaaS Maker Factory is an online toolkit for developing business applications without programming. The

point-and-click approach of SaaS Maker Factory may appear simple, yet it is customizable and extensible to

support the specialized requirements of the complex organizations. The SaaS maker Factory includes tools

for designing a user interface, data-driven forms, workflow, and bold-on modules. With zero programming,

developers can “turn on” features for the end users, such as for searching or designing reports. The platform

manages many of the more difficult functions on behalf of developers, such as authentication, federated

search, role-based access control and application multi-tenancy.

The SaaS Maker Factory includes several functions for building robust applications:

1. Custom Interface: Create rich user experiences using a WYSIWYG editor, including look-and-feel,

help files, email notifications, and more without programming.

2. Workflow: With a mouse click, developers can give their users an integrated workflow designer,

workspace management, or federated full-text search capabilities.

3. Remote Administration: The Admin Control panel makes it easy for administer users, security,

bolt-on modules, and other system-wide and workshop-wide settings.

4. Data-driven Forms: The Tenant Manager automatically integrates data entry forms into the

security and reporting engines.

THE SAAS MAKER FACTORY

Page 15

5. SDK / Open API: Easy addition of third-party web services as reusable modules. Examples include

Java, .NET and PHP platforms for applications such as collaboration, video, mapping, geospatial,

remote desktop, and more.

6. Security: Integrated user management system via Role-based Security engine for improved

security and privacy in multi-tenant environments.

7. Workshop Management: Quickly implement multi-tenant applications for virtual organizations

and sub-organizations.

8. Reporting and Business Intelligence: Integrated Report Designer and Business Intelligence

engine to deliver data in ways that are more meaningful.

9. Subscription Commerce: The ability to publish apps for subscription-based revenues with

integrated e-commerce capabilities. SaaS Maker handles the trials, subscription management, email

notifications, and back-end commerce.

The SaaS Maker Factory implements a unique “Idea to Revenue” approach that guides developers through

the steps from rapid prototyping through deployment for subscription-based revenues. The SaaS Maker

Factor allows developers to focus on developing mission-critical functions instead of getting distracted with

mundane development activities and without being caught up in the complexities that are typically

associated with runaway SOA projects. On the surface, the SaaS Maker Factory may appear easy; however, it

implements sophisticated business application architecture behind the scenes.

USING THE SAAS MAKER FACTORY (DESIGN MODE)

When you log into the application as the account holder, your application will open in Design Mode. Design

Mode is the core of the SaaS Maker™ factory that hosts all the tools needed to create a custom SaaS

application. As a developer, you will implement the necessary tools and assign appropriate permissions for

end users.

The seven icons that can be seen on the left side of the home page within SaaS Maker™ Factory are what

the developer will use to build their application and user experience. After logging in, you will be taken to

the landing page which falls under the Getting Started icon. From this area, you are presented with a

welcoming statement, as well as a few tips to get you on your way. Here you will see the other areas for app

development laid out as icons along the left side of the application.

As a developer, you have the ability to switch between Design Mode and Preview Mode, where you can

instantly access the application as an end user administrator. The Tools link will help you manage

preferences and administrates the developers account. Tools also features a link to access the Role-based

Workflow application where you assign duties and define the roles of the users you create. If needed, the

Help link will reveal information pertaining to the application and framework, including version and build

date. The drop down menu on the right side can be used to select a defined space created by either a

privileged user or administrator. Selecting Go to Space will change the workspace to the desired space.

THE SAAS MAKER FACTORY

Page 16

GETTING STARTED

The first icon is the default area called Getting Started, where you are taken to as a developer after

successful login. Virtual Global, the developers of the SaaS Maker™ application welcome you to the platform

and offer suggestions for developing your SaaS. The page indicates that Preview Mode can be used to glide

between modes to utilize advanced techniques. If you feel that you need further assistance in creating your

application, you can contact Virtual Global by following the link on this page.

USER EXPERIENCE

The first actual tool that you encounter beneath the Getting Started icon is the User Experience area. This

area of the application allows the developer to detail the layout of the pages within the application as well as

the login page.

The user can use either the drop down list or the My Click feature on the pictorial representation to the

right to make edits to that particular area. The layout of both the login page and master page displayed after

login can be repurposed with graphics or text that can be formatted in a variety of fashions. The developer

can use plain text or text formatted for Microsoft Word. HTML can be utilized for web scripting and

formatting as well. Pictures can be dropped into the field and manipulated using the provided tools to

achieve the desired position and layout.

This is also the area where you create additional pages for your application. Here you can add new content

as well as manage the content of any additional pages that will be a part of the application. The page you are

currently viewing will be present in the drop down box at the top left of the interface. Here you can edit the

content of your pages in the same way you can with the login and landing page. This is where you will

implement other features of the application from the developer created Forms. Other tools like Gizmos and

THE SAAS MAKER FACTORY

Page 17

other applications, such as web plug-ins are also accessible. Adding a new page can be accomplished simply

by clicking Add Page and supplying a name for the page.

FORMS

Forms is the area of the application used for creating custom made tools to collect data. Forms are tables

the developer defines for users to categorize and retain data. SaaS Maker™ has one form predefined as a

type of basic sample that can be viewed when the Show Embedded Forms box is checked and it may be

edited if the developer wishes.

By selecting the icon link New the developer will be taken through a short, two-step wizard to define the

layout and parameters of the form. You are first asked to define the layout style, turn on optional visible

fields like the dashboard, and alter the date/time format. Proceeding to the next section of the wizard will

allow the developer to add and label, as well as edit fields of the form. Selecting the icon Create Field will

create a new field that the developer must name. Here the developer may also engage other options by

checking the provided boxes, such as the option to make the field “mandatory.” Navigating through fields can

be accomplished through the drop down list in the top right of the interface. Clicking Finish will create the

form and take you back to the main page of the Forms area of the application. Clicking on any of the Forms

that have been created will allow the developer to edit the content and parameters of that form.

GIZMOS

The Gizmos of SaaS Maker™ are the applications that users will rely heavily upon within their own space of

the application. Gizmos are powerful tools embedded into SaaS Maker™ that will give users the ability to

accomplish a variety of tasks from creating spreadsheets to unified communication abilities.

THE SAAS MAKER FACTORY

Page 18

On the main page of the Gizmos page, the developer can add the desired Gizmos into the application

mainframe. The interface is very straightforward: by selecting the desired application from the Available

Gizmos pane, then clicking the Add button, the Gizmo is moved to the Included Gizmos area, where it will

be available for use from within the application. When a user supplied with appropriate permissions is

logged into their account, the Gizmos that appear in the Included Gizmos window will be available for use

in the application. By default, Gizmos will appear on the left within the Toolbox pane inside the SaaS

Maker™ application.

The second tab under the Gizmos section in SaaS Maker™ allows the developer to allocate permissions

based on user Role. The user groups created by the developer or by an administrator can be assigned

privileges based on the desired level of control. A short description for the abilities of individual

permissions is outlined at the top of the page of this section to guide the developer in appointing the correct

permissions.

/ŀƭŜƴŘŀǊ

Calendar is a tool to help with workflow management for end users of the SaaS Maker™ application.

Projects and tasks within projects that have been assigned starting and/or completion dates will populate

based on the specified date with respect to the prioritization status assigned to that task. Components of

other Gizmos, such as files stored in the File Cabinet, or a document created within the Spreadsheets app

may have an assigned start time and completion time that will be reflected within Calendar.

THE SAAS MAKER FACTORY

Page 19

aŀƛƭ

By adding the Mail Gizmo to the application, users have access to a built in web mail interface to send and

receive messages to users within the application. After the application has been published, both users and

the developer may send emails to recipients outside of the SaaS Maker™ domain.

wŜŎȅŎƭŜ .ƛƴ

This Gizmo should be very familiar to most users as it functions much like the Recycling Bin that has been

featured in Windows since Windows 95. When an item is deleted from another area of the application, it will

populate in the Recycle Bin Gizmo.

bƻǘŜǎ

The Notes Gizmo is a useful tool that allows users within the application to create notes using a word

processor interface. A user can append files as attachments to the notes created as well. Notes may have

attached priorities as well as assigned start and completion times. As such, notes created by users will

appear both in the Notes Gizmo, as well as in the Calendar Gizmo, if available.

/ƻƴǘŀŎǘǎ

Contacts is the contact management system used for applications created in SaaS Maker™. Adding Contacts

into the application will allow users to build and maintain a contact database. All users that have access to

the Contacts Gizmo will have the ability to use the features of this tool based on permissions assigned to

their Role, which include attaching and viewing files associated with instances stored in Contacts.

.ǳǎƛƴŜǎǎ LƴǘŜƭƭƛƎŜƴŎŜ

The Business Intelligence Gizmo is an analytical tool that allows users to refine information contained in

reports. Here users can access the features of the Report Designer function to compile and manipulate

information from a variety of sources within the SaaS Maker™ application such as data from user created

Forms and Spreadsheets. This Gizmo allows a user to pull up reports generated within SaaS Maker™ that

can be set to view in a multitude of different formats from bar graphs to trending charts.

{ǇǊŜŀŘǎƘŜŜǘ

Spreadsheets is an area within the application that allows a user to create, manipulate, and share

spreadsheets depending on the limitations defined by the user’s Role. A user can easily import files from

Microsoft Excel that are saved in current XLS format as well as export to a Microsoft Excel file.

/Ƙŀǘ

Enabling the Chat Gizmo allows team members to join in on a group discussion. Within the application

users can easily take part in a discussion with an interface that allows users to quickly send and receive

information in a group chat setting.

THE SAAS MAKER FACTORY

Page 20

5ƛǎŎǳǎǎƛƻƴ

Discussion is another tool that gives your application an area to create conversation and post relevant

information in a forum fashion. Unlike Chat, posts that are made in Discussion will show up for all users to

view as threads within this Gizmo.

CƛƭŜ /ŀōƛƴŜǘ

File Cabinet allows you to utilize storage space within your application to consolidate and share resources.

A folder-based data storage structure can be created to organize files. Files and folders may be assigned

access credentials to prevent unauthorized users from accessing data based on their user class.

¢ŀǎƪǎ

The Tasks Gizmo grants users within the application the ability to create workflow specific notes much like

the Notes Gizmo. A user will have the ability to attach files as needed, as well as assign priority to the tasks

created.

ROLES

In a centralized public environment, the idea of multiple application instances where software is logically

separated for software supporting multi-tenant domains could seem daunting in regards to security. SaaS

Maker™ applications can be broken down into several layers of security for any application instance. Each

Space can have its own distinctions of record level access through feature access, such as administrating

access to certain Gizmos. Team Members can be assigned to predefined groups called Roles, which serve

as a template for creating security protocols.

Authentication for each individual user of a SaaS Maker™ application is handled by the unique user name

and password attributed. Team Members can be defined by the developer and administrators with

THE SAAS MAKER FACTORY

Page 21

appropriate credentials. Both administrator Team Members and regular users can have different

permissions attributed depending on the Space accessed. For example, if a SaaS Maker™ has three Spaces,

an administrator could be assigned full privileges for each space or, in certain cases, could have full

privileges in one Space, but regular user privileges in other Spaces.

Within each Space, different Roles may have different levels of access. When creating a Space,

administrators and developers have the option of porting Tools, Team Members, and/or Security features

to the new Space versus creating a Space with default privileges and available Tools. Ported items from

other Spaces may be further refined within that Space for enhanced security without affecting other

Spaces.

FEATURES

The next icon on the list is Features. Under the Features area the developer can assign permissions based

on user classification. Here the developer has the ability to name and define user abilities for the Role in

which they are classified. The developer can create a set of access control lists that will define the features

an administrator, or user, will have access to when logged into the application. A privileged user or

administrator may have access to Security under the Manage Space within the application where user

access may be tweaked and further developed by adding and defining new Roles as needed.

Clicking on the drop down menu will reveal Roles created by the developer or administrator. After a Role is

selected, permissions may be assigned or removed by selecting applicable features from the area below. If a

group exists in multiple Spaces the checkbox can be selected to either apply to all existing Spaces or only

the current Space in which you are logged in.

THE SAAS MAKER FACTORY

Page 22

SPACES

Within each SaaS Maker™ application, different Spaces can be created for different workgroups. A Space

may be utilized to separate functionality from other areas within the same program. Team member and

their associated Roles may be ported across Spaces or entirely new Team members may be created for

each individual Space depending on the intended goal of the application. Creating new Spaces may not be

necessary for every application.

OTHER

The area known as Other in Design Mode allows the developer to manage areas of the application that

affect all users. The developer can access such global settings as defining the names of users and Spaces

within the application, as well as the name of the application itself. When new users are added to the

application, you have the option to choose whether that user enters a private or a shared Space.

THE SAAS MAKER FACTORY

Page 23

Here the developer can access features that will be used within the application itself. You have the ability to

both manage workflow and access the report designer without switching to Preview Mode. Future

provisions to SaaS Maker™ are listed here so developers can see what lies down the road for future updates.

If you require assistance building your application, you can use the link to contact Virtual Global.

PUBLISH

Once you have created your application and have tied all the loose ends down, it is time to publish your

creation! Here you can choose to publish the application. Depending on the development package selected,

the application will be available for purchase or use within a business environment. You have the ability to

set the price the end users will pay to use the software as a service you created. Virtual Global assess

platform fees. However, as the developer, you can choose to increase usage fees paid to you.

PREVIEW MODE

Page 24

Preview Mode

Welcome to the core of your application! This is the testing ground where you will actually use the features

of your application as a highly privileged administrator. Here you will see your application as an end user

will with the exception of having more tools available depending on the user’s classification.

The toolbar at the top of the page hosts tools that are unique to preview mode. Some of these features can

be used to alter the core functionality of the program if logged in as a developer. Many of the features found

in Design Mode can also be accessed to make instant changes to the application.

On the left side of the page is where a user will access the Gizmos that have been added for use within the

application. Simply clicking on the Gizmos will take you to a page where you can utilize the features of that

Gizmo. It is also possible to embed Gizmos within the page itself.

TOOLBAR FEATURES

The Toolbar features five menu items which contain important tools to help you further develop your

application. Although most of the features that are found within these lists can be accessed within Design

Mode, accessing the tools in Preview Mode will allow you to make changes instantly without having to

switch between modes. Some of the features in Preview Mode are unique as well, allowing a developer to

further flesh out the application

New

The New menu gives the developer, or an administrator, two options to further add to the functionality of

the program.

PREVIEW MODE

Page 25

¶ Team Member– Selecting Team Member will allow you to add a new user to your SaaS

Maker™ application. Simply create the user name and preliminary password, and then add their

name and email address. Upon receiving the email, the user can use the credentials provided in the

email to login and get started.

¶ Space– Here the developer or administrator can create additional workspaces. You can easily

carry over as many options from the original Space by selecting the options to copy to Tools, Team

Members, and Security. This is very useful for staying organized when managing separate projects.

Admin

Admin features tools that will allow a developer, or administrator, to manage various features of the

application.

¶ Space List– These are the Spaces that have been created for the application. Here the Spaces

that exist can be managed, edited, or disabled.

¶ Team Member List– The Team Member List shows all the Team Members created for the

application. Existing user data can be edited or disabled from the application.

¶ Security– Within Security, you or an administrator will have the ability to manage and define

roles as well as privileges for users of the application. The first tab, Roles, allows the developer to

edit the names of non-core roles as well as add or remove new roles. The Features tab allows you

to change the availability of the tools based on the Role in which a Team Member is placed.

Privileges grants abilities to Team Members, such as defining which Roles are allowed to edit

items within the application. Members allow you to assign Team Members to the Roles that have

been created.

¶ Customizable Area– This area grants the same ability to the developer, or privileged user,

as the User Experience area from Design Mode. Here edits and additions can be made to the

aesthetics of the application, as well as add functionality by creating new pages, or refining existing

pages.

¶ Settings– In Settings you have the ability to change the names used for different parts of the

application. You can choose to change the name of the application itself, the users, and spaces. You

also have the option to implement strong passwords for increased security.

Manage Space

Under the Manage Space menu, the developer, administrator, or privileged user has the ability to edit

various features of the space you are currently in.

¶ Invite– This area allows you to request other users to join the Space you are in. Users that join

the Space will have access to its features to the extent of the user’s privileges.

¶ Refresh–Refresh will update the application with newest changes. After Refresh is selected,

you will be taken back to the main page of the application.

PREVIEW MODE

Page 26

¶ Rename– The option Rename allows you to edit both the name and description of the current

Space.

¶ Security–Security gives the user the ability to change the security features of the existing

Space. The security applies only to the space, but the Roles, Privileges, and Members tabs

function in the same way security does in other areas of the application.
o Roles – Under this tab, Roles can be set up where Team Members may be placed such that

access privileges may be assigned to various components of the SaaS Maker™ application.

o Privileges – Here, default and administrator defined Roles can be customized for the

desired level of access to features within the application.

o Members – This is where Team Members within the currently selected Space may be

placed into Roles depending on the required level of access for each Team Member.

¶ Gizmos– Under Gizmos, you have the ability to change the Gizmo availability to that Space. The

Gizmo Group tab is an area where you have the ability to change the name of the Gizmo Toolbox

on the left side of the page, as well as create additional custom Gizmo toolboxes.

¶ Folders– The Folders menu option gives you, or a privileged user, the ability to manage folders

and their naming convention for that particular Space. You can add additional folders as well as

delete or suspend folders that are not in use or not needed.

¶ Priorities– Custom priority levels can be defined for the Space in which you are in. You have

the ability to edit the name of each existing Priority, as well as change its hierarchy.

¶ Customizable Areas – The Customizable Areas feature allows you to make visual and

minor functionality changes to other areas of the application. Here, plug-ins such as Gizmos can be

edited for a more personalized presence in the application.

¶ Leave– By selecting Leave, your account will become separated from the Space that you are in

currently. An administrator will be required to place a user into an appropriate Space, or a user

with appropriate credentials must invite that user to join a new Space.

Tools

The Tools menu grants access to several areas of the application that a user or administrator will require for

various functions.

¶ My Preferences– Under My Preferences, details about the user currently logged in may be

edited. If logged in as a developer, your SaaS Maker™ account options such as billing and payment

information can be edited, as well the development package that was initially selected when the

SaaS Maker™ account was created.

¶ Role-Based Workflow– With this option, the developer and the administrator have the

ability to assign workflow based on user role. The link opens a second page where you will have the

ability to assign tasks based on priority to different user classifications defined within the

application.

PREVIEW MODE

Page 27

¶ Workflow Designer– The Workflow Designer is an organization tool that allows a

privileged user to set stages for a project. Here, details pertaining to specific tasks can be outlined in

detail to help set goals for Team Members.

¶ Form Designer–Forms for compiling information within a SaaS Maker™ application can also

be accessed using the Form Designer. The developer, as well as privileged users, may create

additional Forms that can be implemented into the application, as well as modify existing Form

parameters.

¶ Reports–Reports gives you access to the reports that you have created in Report Designer. You

may edit the reports in the same fashion that the forms were created. You have the option to sort

the reports based on Team Member or Space by selecting the check box. You can also choose to

view the reports in HTML or as a PDF that can be exported into a file.

¶ Report Designer– The Report Designer is the area of the application where users will

create reports from within the application. The user will be taken to a separate area of the

application that is the Report Designer, where the user will be asked to provide their account

credentials again, as if logging into the application itself. Users will have the ability to compile

information from other resources in the application such as from Forms and Spreadsheets. Further

details on Report Designer can be found at the end of this section.

¶ Bug Report– In the event that a user encounters a glitch in the program interface, Bug Report

allows the user to send a detailed report to the developers at Virtual Global. If the user is frequently

encountering a problem it is important to send a Bug Report so that it may be promptly corrected.

¶ Send Status Email– Within the Send Status Email console, an administrator or privileged

user will have the ability to send update emails based on Task priority. Tasks that are past due can

be consolidated by the user based on space and time past due. Email notifications can be scheduled

to occur as a one-time event, or on a regular basis as either a daily or weekly occurrence.

¶ Search– The Search function allows a user to input a word or phrase into the search field to find

information. The search may be refined to look through specific Gizmos, or it can be left to search

throughout the entire application. An advanced search will allow a user to specify dates and

priorities that may have been assigned to the search item in question to conduct a more accurate

search.

¶ Download Tray Notifier– The Tray Notifier is a downloadable console application that

gives a user the ability to quickly monitor the status of their SaaS Maker™ application. A user can

quickly see chat activity and unread mail notifications in this console without navigating to that

area within the actual application.

REPORT DESIGNER

Page 28

Report Designer

Featured within the SaaS Maker platform is the utility known as Report Designer, which gives an

appropriately credentialed end user the ability to create highly customized reports based on data contained

within Gizmos and custom Forms from the application. The Report Designer is an intuitive interface that

allows data to be compiled into a desirable format.

When accessing the application you are asked to first provide appropriate credentials. A new name must be

created for each individual report. You also have the ability to access reports created previously to modify

the capabilities or look of the report.

CREATING A NEW REPORT

When initially creating a report template within Report Designer you will first be taken to the Report Data

Source Editor. This utility is where you will implement the data stored from various sources stored within

your application into a format conducive for a custom report. This data can be manipulated by various tools

within Report Designer and tailored into a presentable format.

Here you will choose from a Gizmo or Form from which you will collect data. Based on the item you select,

you will have the capability to disseminate instances from within the object that contains information and

integrate the values or conditions of the data into the report. This information is what will be used by other

components and utilities in Report Designer.

REPORT DESIGNER

Page 29

After adding a component into the report, instances that hold information will populate in the left most field

named Available Fields. After making a selection, clicking the Add button will move the item into the

Selected Field box in the center of the screen.

Filters can be applied to the item selected from the Selected Field table. To right of Applied Filters filed

you will be able to modify the parameters of the data that will integrate into the other functions of Report

Designer. The data selected and corresponding parameters defined in Report Data Source Editor will be

available in the application by using specific tools.

When looking at the main page of Report Designer, there are specific areas where different aspects of

creating a report will take place. The center of the page is the workspace where tools from the application

(on the left) will be used to create fields and spaces for displaying information. The left side of the page

holds icons for tools that, when selected, will create the corresponding utility in the workspace of the report.

The right side of the main page breaks down the items within the workspace by section. Selecting the

containing area of utility you wish to manipulate will expand the element to reveal the items within that

section. After choosing an item, the parameters of that item can be edited in the area below by scrolling

through the list and selecting the appropriate field.

The toolbox on the left side is where you will first choose a utility to implement in the workspace. Further

clicking in the workspace will give you the ability to expand the tool to a necessary size, though it can be

further edited later. The tools available are as follows:

¶ Label – The Label tool allows the user to create an area on the report to brand an adjacent utility

on the final report within the workspace.

¶ TextBox – Using the TextBox tool, the user can create an area to display text based information in

the workspace and on the final report.

REPORT DESIGNER

Page 30

¶ CheckBox – A CheckBox can be implemented in the workspace for use in the final report to select

or remove information defined in the tool’s parameter.

¶ RichTextBox – Much like TextBox tool – a user can display text based data but this tool can utilize

more advance formatting standards to display information.

¶ Shape – By selecting Shape, a user can place an object in the workspace to assist in formatting the

information displayed in the workspace. The default Shape is a rectangle, but it can be modified to a

rounded rectangle, as well as an ellipse.

¶ Line – Like the Shape utility, Line can be used for formatting and aesthetic purposes in the report

workspace and final report as well.

¶ PageBreak – This tool is much like the Line but with predefined dimensions. PageBreak inserts a

line across the workspace from where it is placed.

¶ Barcode – The Barcode tool can be used to differentiate different reports by associating the space

in which it is inserted with a user defined barcode. The user can define the parameters of a

Barcode to integrate values used by scanners to catalog reports and for quick access when handling

a printed version of the report.

¶ SubReport – Within the SubReport tool, the user can place a field that contains information

extracted from the application based on its inclusion in the Report Data Source Editor.

¶ ReportInfo – Utilizing the ReportInfo tool is how data will be generated in the report. The

DataField parameter will be used to define what information is utilized within a ReportInfo field

in the final report.

After the appropriate tools have been included in the workspace in the Report Designer, the defining

fields underneath the right-most window need to be modified so that each field may function

appropriately. When selecting the included tool above, the parameters available for modification will

populate in the window below.

Before modifying the parameters of the individual parameters of each tool, the data included in the

report will need definition. By selecting the overall report contained in the top the window on the right,

the functionality of information integrated into the report can be defined for use by the included tools.

Underneath the Data section in the space below, the user can expand the field to reveal areas to modify

both Relations and Tables of the integrated data. Modifying these fields will adapt information for use

within the tools implemented into the workspace of the Report Designer.

Help

The Help menu gives users the ability to access detailed information on features within the SaaS Maker™

application

REPORT DESIGNER

Page 31

¶ Contents– In the Contents section, a user can search through information on all features of the

SaaS Maker™ application. The user may scroll through and select topics of interest or search for

specific information on the item in question.

¶ Developer License Agreement– The Developer License Agreement allows the

developer to create a legal agreement for their application. The agreement can be custom edited to

contain whatever legalities the developer wishes the users of the application to abide by. This can

be edited by the developer within Preview Mode under the Admin menu with the Customizable

Areas option, or from Design Mode under User Experience.

¶ About– The About section gives a user the version number and build date of the actual SaaS

Maker™ application. This can be cited in a Bug Report if a user, or developer, is experiencing a

problem to further assist a member at Virtual Global in resolving the issue in a timely manner.

SAAS MAKER OPEN PLATFORM API

Page 32

SaaS Maker Open Platform API

Early cloud rollouts were often made in isolation, sometimes as “proof of concept” designs, with the idea

that the enterprise had to be all-or-nothing. This led to an early resistance of the cloud, giving rise to the

idea that every app and data store would have to be converted and rewritten. SaaS Maker overcomes this

objection, and allows cloud applications to exist in harmony with the entire enterprise, including legacy

apps.

SaaS Maker’s open platform API allows software companies, government agencies, and other developers to

integrate SaaS Maker apps with their existing solutions and stacks. Furthermore, ISVs can deliver solutions

on the platform using a variety of vendor-independent languages and technologies; in doing so, they will

lower the long-term costs of ownership for their customers.

As PaaS gain market traction, openness will gain relevance. That's why open platforms are important as the

cloud unfolds. The term “open” has many meanings, and some “open” platforms may still have limitations. In

truth, platforms usually have degrees of openness, rather than “all or nothing” openness. For example,

Microsoft Windows is an excellent example of an open platform, especially in its earliest incarnations

because any vendor could develop on Windows. At the same time, you couldn't run a Windows program on

an Apple computer. You needed to run it on Windows. This is the most common type of open platform—

open, but with some inherent limitations.

SaaS Maker is an open platform (with an open API) for integrating 3rd-party, open source, legacy web

services, and data sources from a wide variety of vendors, and using a variety of programming languages

including Java, .Net and PHP. SaaS Maker developers are free to take advantage of the millions of emerging

and existing web services, without being limited by any single vendor or technology to support its mission

requirements.

The SaaS Maker platform may optionally be installed on traditional servers for “cloud readiness”. Architectural

highlights include a point-and-click-wizard for rapid prototyping and building business applications without

programming, scalable design to accommodate large datasets, integrated security model for authentication, Role-

based Access Control and data protection, an open API and modular architecture for integrating with legacy

systems, remote administrative consoles for managing users, security and system configuration, integrated

Firebird database for affordable scaling, available for SQL Server and Oracle databases, and a robust feature-set for

building and deploying mission-critical applications.

SAAS MAKER™ INTEGRATION AND EXTENSION

Software companies can integrate SaaS Maker™ with their existing solutions and stacks using the open

platform API. Furthermore, ISVs can deliver solutions on the platform using a variety of vendor-independent

languages and technologies; in doing so, they will lower the long-term costs of ownership for their

customers.

SAAS MAKER OPEN PLATFORM API

Page 33

SaaS Maker™ is a highly intuitive tool that has the ability to create robust applications without back end

programming. Though you can create applications with only the GUI provided, a developer may access the

application programming interface (API) to further customize their application, as well as embed custom

applications. SaaS Maker™ exposes an API consisting of web and Java Script methods which allow you to

extend your application using the tools of your choice.

SaaS Maker™ Plug-in is a web application that is compiled and runs within the SaaS Maker framework. This

empowers the user to create SaaS Maker extensions that consume the web service API using the

tools/language of his choice. While our SDK is currently only available for .NET developers, the SaaS Maker

API can be consumed by any client and web applications implemented in Java, PHP, and other languages can

also be SaaS Maker plug-ins.

Plug-in structure

Plug-ins can be developed, tested, and published within the SDK for .NET developers. Plug-ins that are

written in Java, PHP, or other languages will need to be developed (using the web services API), tested, and

published using tools outside SaaS Maker. The basic structure of the plug-ins will be the same in that they

will have 3 types of pages, XML files for registration and compiled application code.

Plug-in page Types:

¶ Workshop Page: Each plug-in must have one workshop page. This is the page that is loaded when

someone clicks the plug-in icon in the SaaS Maker website. This functions as a home or dashboard

page.

¶ Container Page: This page type is for CRUD (Create Read Update Delete) operations on records that

will be part of a work flow and/or needs system/workspace/record level permissions. The name

comes from the records being wrapped in a data access “Container”.

¶ Other: Any other web page that is not a workshop or container page.

SAAS MAKER OPEN PLATFORM API

Page 34

Setting up your software development environment (.NET SDK)

Prerequisites: There are some development tools you will need in order to use the SDK.

¶ FireBird 2.5 or greater

¶ MS Visual Studio 2010 (Express version works fine)

¶ MS .NET 4.0

The SaaS Maker SDK for .NET developers is an ASP.NET website project that makes it very simple to develop,

test, and publish custom plug-in applications within your SaaS Maker environment using any .NET language.

Follow these simple steps to setup your development environment once you have the prerequisites

installed.

1. Download the SaaS Maker Plug-in SDK from the SaaS Maker home page.

2. Extract the files in the SDK .zip file to a location on your hard drive. The SDK has the following

folder structure:

¶ Bin: Contains the assemblies necessary to run the SDK environment which is an emulation

of the SaaS Maker framework.

¶ Db: Contains database files.

¶ Doc: Contains sample plug in pages and documentation.

¶ Plug-in: This will be the root of your plug in code base and the web application root. There

are 2 existing sub directories (bin, SDK) that contain the files that run the SDK

environment. Do not modify any of these files.

¶ Publish: This is where your compiled and zipped plug in file will be saved when you

publish the plug in.

¶ Software: Any add-ons needed for the SDK runtime environment will be available here. At

the time of this writing it is the firebird add-ons only.

¶ XML: The XML files for registration are stored here. These files are created by the SDK.

3. Find your Firebird installation directory and copy files from Plug-in\software\firebird_addons\UDF

to the firebird UDF directory. Copy files from Plug-in\software\firebird_addons\Lib to the firebird

lib directory. These files have user defined functions and libraries for firebird that SaaS Maker

framework needs to run.

SAAS MAKER OPEN PLATFORM API

Page 35

4. Edit Prepare.cmd in the root directory. Set FIREBIRD_HOME = %Your Firebird install directory

containing the bin folder%

5. Run Prepare.cmd in the root of the directory you extracted the SDK to. This will prepare a working

database for your application on the local Firebird installation.

6. Now you are ready to open the Visual Studio solution file named “Plug-in.sln” in the root of your

extracted SDK directory. Once the solution is loaded in visual studio you can begin developing.

Simply run the solution to debug your Plug-in code and to configure the Plug-in settings as defined

in the next section.

Configuring your plug-in settings and navigating the .NET SDK

1. With the solution “Plug-in.sln” open in Visual Studio, run the website. This will launch the SDK user

interface in your default browser.

2. Configure permissions: In addition to the built in system and workspace level permissions, Plug-ins

can also use permissions that are defined for the Plug-in alone. The permissions are defined here.

Once defined they can be added to roles via the security feature and checked in the Plug-in code.

3. Configure container options. These options apply to any page that is implemented as a “container

page” to leverage the system and workspace level security and workflow functionality of the

framework.

4. Create and administer Plug-in database tables. Using the Plug-in manager you can create and drop

database tables used by your Plug-in. The manager creates the database tables locally and also

saves an XML file that is used to create the database schema for the Plug-in when registered.

SAAS MAKER OPEN PLATFORM API

Page 36

SaaS Maker Application Programming Interface (API)

Creating custom plug-ins to run on the SaaS Maker platform is simple regardless of your level of

development experience. There are only 3 things you need to create your own custom plug-ins:

1. Basic web programming skills.

2. Knowledge of API specific logic: There are a couple fundamentals that are unique to SaaS Maker

plug-ins the developer will need to be familiar with. These are detailed below.

3. Knowledge of the API: A SaaS Maker™ plug-in interfaces with the platform framework via the web

services API, which is defined below.

Using the Container Wrapper

A database record and the corresponding web page must be wrapped in a “container” in order to take

advantage of the built in workflow and the system/workspace/record level security engine.

 A container page should be focused on reading and writing to one record. To open a container page:

Use Java Script call " window.parent.openPlug-inItem_p(pagename);" to open Container with empty fields

for creating new plug-in Item.

Use "window.parent.openPlug-inItem_p(pagename, recordid, tablename)" to open Container with an

existing item in the database.

When a container page is closed (this can be via the save, delete or exit container commands), the command

attempts to execute a Java Script method onContainerClosed(arg) in the calling page where “arg” is an object

having .reason, .id and .table properties. The developer can use this method to handle events when

container records are saved, deleted or simply closed.

To inspect properties:

function onContainerClosed(arg) {

 window.alert("container closed! Reason:"+arg.reason+", id:"+arg.id+", table:"+arg.table);

 }

If a Plug-in page is opened and saved in a container, the save event for the page must be called in the page’s

LoadComplete event handler.

Example:

SAAS MAKER OPEN PLATFORM API

Page 37

if(IsPostBack && ContainerHelper.GetOperation(Request) == ContainerOperation.Save)

{

 Save(long.Parse(Request.QueryString[RequestConstants.RECORD_ID]));

}

Class PluginManager:

Constructors: PluginManager(string apiKey): apiKey argument is a unique key that identifies all calls to

the SaaS Maker framework. This argument can be obtained/passed in two ways.

1. Plug-in running in SaaS Maker site (Obtain key from framework): If the call originated within a

Plug-in page, the value is taken from URL parameter “tlpageid” (or RequestConstants.API_KEY).

 Example:

 var apiKey = Request.QueryString[“RequestConstants.API_KEY”];

 var manager = new PluginManager(apiKey);

 All framework calls are made via manager object which has key

2. Client running external plug-in through SaaS Maker™ site (pass login data): If the call originated

outside a SaaS Maker™ web site, the API key must contain the identity information the platform

framework needed in place of a key. In this case, it requires a “;” delimited string, in this order: user

name;password;Plug-in name; company name where plug-in name is the internal plug-in name of

an existing plug-in to impersonate.

Examples: Passing login data works in place of an API Key delivered in request by the platform framework

in the following cases:

a. Mobile client that wants to consume API.

b. Client running external to a SaaS Maker™ site. May be any platform (Java, PHP, Cold Fusion etc.)

 Example:

 var apiKey = “theUserName;password;yourPluginName;yourCompanyName”;

 apiKey is passed as first parameter to all web service calls.

SAAS MAKER OPEN PLATFORM API

Page 38

Class PluginManager:

Constructors: QueryData(string apiKey).

Methods

Name Parameters Return Type Description

GetTableSchema (String tableName) DataTable Returns an empty data table

for the specified DB table

DeleteRecord (string tableName,

string keyField, long

recordId)

Boolean (true for success) Permanently deletes one

record. Returns true for

success false = not deleted

RecycleRecord (string tableName,

string keyField, long

recordId)

Boolean (true for success) Moves one record to the

recycle bin. Returns true for

success false = failure

SaveRecords (SaveParams

accessParams)

SaveRecordsResult Saves a collection of records

to one data table. Records

many be of type Insert,

Update,Delete or any

combination of these. (See

Classes SaveRecordsResult

and SaveParams)

GetRecords (GetParams

getParams)

Overload (string

tableName)

DataTable Gets all records for the

specified table with empty

filters collection. Add filters if

desired. (See class

GetParams)

GetRecordById (GetParams

getParams)

DataTable Gets one record by DB table

key (See class getParams)

ExecuteQuery (QueryData query) DataTable Executes complex query as

defined by QueryData

structure and returns results

in data table. (See class

QueryData)

GetSpaceName (Long spaceId) String Returns the name of the space

for the space id

GetPrivilegeIds (Long spaceId) IList<Long> Returns a list of privilege ids

for the user

SAAS MAKER OPEN PLATFORM API

Page 39

HasContainerPrivilege (long recordId,

string tableName,

ContainerPrivilege

privilege)

Boolean Does the logged in user have

the privilege for the record?

HasPluginPrivilege (string

privilegeName)

Boolean Does the logged in user have

the plugin privilege?

Properties

Name Type Description

ApiKey String Gets the API Key set by the constructor

CurrentUserName String Gets the user name of the logged in user

CurrentUserId Long Gets the user id of the logged in user

CurrentSpaceId Long Gets the current work space id

CompanyName String Gets the company name of the logged in user

GroupIds IList<long> Gets a list of group ids the logged in user belongs to

PluginName String Gets the name of the plug-in

SubDomain String Gets the sub domain of the application the plug-in is

running in

OnlineUsers IList<long> Gets a list of user ids belonging to users online at

the time

OnlineSpaceUsers IList<long> Gets a list of user ids belonging to users online at

the time

SAAS MAKER OPEN PLATFORM API

Page 40

Class Query:

Constructors: One constructor, Query(string apiKey): apiKey argument is a unique key that identifies

all calls to the SaaS Maker framework. See PluginManager class

Methods

Name Parameters Return Type Description

Execute (QueryData

queryData)

DataTable Executes query defined in the

queryData param (See class

QueryData)

Class QueryData:

Constructors: One constructor, QueryData().

Properties

Name Type Description

PrimaryTable TableDef Gets and Sets the primary database table to query.

(See class TableDef)

JoinedTables IList<TableJoin> Gets and Sets a list of tables to join (See class

TableJoin)

Class TableDef:

Constructors: TableDef(). TableDef(string name) set the table name

Properties

Name Type Description

Name String Gets and Sets the table name

Columns IList<TableColumn> Gets and Sets a list of columns to include

in the query for this table (See class

TableColumn)

SAAS MAKER OPEN PLATFORM API

Page 41

Conditions IList<TLPluginUtils.TLJoinerCondition> Gets and Sets a list of filter conditions to

include in the query for this table

Class TableColumn:

Constructors: TableColumn().

Properties

Name Type Description

Visible Boolean Show the column in the query results?

Name String Gets and Sets the database column name

Alias String Gets and Sets an alias that replaces DB column name

in results if not null or empty

Class TableJoin:

Constructors: TableJoin().

Properties

Name Type Description

Table TableDef Gets and Sets the table to be joined

ForeignKey String Gets and Sets the name of the FK to use in the DB

Joiner TLRelations Gets and Sets the join type(Inner, LeftOuter,

RightOuter)

Conditions IList<TLJoinerCondition> Gets and Sets a list of conditions for the join

Methods

Name Parameters Return Type Description

AddCondition (string columnName,

PluginService.TLCondition

condition, ArrayOfString

parameters)

void Adds one condition to the list

SAAS MAKER OPEN PLATFORM API

Page 42

Class SaveParams:

Constructors: SaveParams().

Properties

Name Type Description

TableName String Gets and Sets the DB name of the table to save the

record(s) to

ContainerData ContainerData Gets and Sets the container data for the record. Set

null for records that are unmanaged.

Records IList<RecordData> Gets and Sets the list of records to be saved. (See

class RecordData)

Methods

Name Parameters Return Type Description

AddRecord (DataRow record,

string keyField,

SaveType operation,

long recordId)

void Adds one record to the list

Class RecordData:

Constructors: RecordData().

Properties

Name Type Description

Record DataRow Gets and Sets the data row.

Operation Enum SaveType Gets and Sets the database operation to be

performed on the record (Insert, Update, Delete)

PublicName String Gets and Sets a user friendly name that is exposed

for record in search

RecordId Long Gets and Sets the id of the key column

KeyField String Gets and Sets the DB name of the key column

SAAS MAKER OPEN PLATFORM API

Page 43

Class SaveRecordsResult:

Constructors: SaveRecordsResult ().

Properties

Name Type Description

Result Enum SaveResult Gets and Sets the status of the operation (Success,

Failure).

RecordIds IList<long> Gets and Sets the list of recordIds affected by the

operations

Class GetParams:

Constructors: GetParams ().

Properties

Name Type Description

TableName String Gets and Sets the name of the DB table

to get data from

RecordId Long Gets and Sets the name of the DB table

to get data from

OnlyCurrentSpace Boolean Limit records to within current

workspace? default = true

Keyfield String Gets and Sets the name of the DB

column that is key for the get call

Filters IList<TLPluginUtils.TLJoinerCondition> Gets and Sets the list filters used for the

get call

Sort TLPluginUtils.TLConditionSort Gets and Sets the sort used for the get

call

Methods

Name Parameters Return Type Description

AddFilter (string columnName, string

coalesceValue,

TLPluginUtils.Enumerations.TLCondition

void Adds one filter

condition to the list

SAAS MAKER OPEN PLATFORM API

Page 44

sqlOperator, List<string>

parameterValues,

TLPluginUtils.Enumerations.TLLinkType

bitWise)

Exceptions: Custom exceptions are thrown by the API to inform the developer if calls are not made

correctly and to help differentiate types of failures. Exceptions include the full .NET exception plus an

informative message for the invalid call or failure.

Exception Throw Conditions

PlatformDataAccessException An unexpected error occurs while making any data access call to the

platform framework

PlatformArgumentException Any argument passed to an API method fails validation

Code Samples: The following code samples are provided to illustrate use of the most commonly

used API methods and scenarios:

Instantiate PluginManager:

using DotNetFacade;

var pluginMananger = new PluginManager(Request.QueryString[RequestConstants.API_KEY]);

Select a single record from a single table:

var dataTable = PluginManager. GetRecordById(new GetParams() {KeyField = "fieldHoldingRecordId",

TableName = "TableName", RecordId = yourRecordId});

Select many records from a single table using a filter: This sample shows a single filter but

many filters can be added to the filters collection as desired.

var getParams = new GetParams(){TableName=”TableName”};

This filter is for a numeric datatype where the value is between 1 and 100 nulls are coalesced to 0

getParams.AddFilter("yourNumericColumn","0", TLCondition.CondBetween, new List<string>(){"1", “3”},

TLLinkType.ltAND);

var dataTable = PluginManager.GetRecords(getParams);

SAAS MAKER OPEN PLATFORM API

Page 45

Select from multiple tables: When data is needed from multiple tables, the Query object is used to

compose a query. Inner, left outer and right outer joins are supported. The Query object can be directly

instantiated or may be accessed via the PluginManager.ExcecuteQuery(QueryData) method.

Select from 2 tables using inner join – queries are constructed using the QueryData object.

var queryData = new QueryData();

var prime = new TableDef() {Name = "PrimaryTableName"};

These are the columns that will be included in your query. Only one here but limited only by DB

schema.

prime.Columns.Add(new TableColumn() { Name = "DbColumnName", Visible = true,

Alias=”ColumnNameInResults” });

queryData.PrimaryTable = prime;

var child = new TableDef("CHILD");

child.Columns.Add(new TableColumn() { Name = "DbColumnName", Visible = true,

Alias=”ColumnNameInResults” });

var join = new TableJoin() {ForeignKey = "TheDBNameOfFK", Table = child, Joiner = TLRelations.InnerJoin};

Add the joined table to query data. There is only one here but you may add as many joins as needed.

queryData.JoinedTables.Add(join);

Execute the query.

var queryResult = pluginManager.ExecuteQuery(queryData);

Save a single new record: Use this approach when you know that you are creating a new
record

Get the table definition, create the new row and update column values.

var dataTable = PluginManager.GetTableSchema("TableName");

var dataRow = dataTable.NewRow();

Update the columns as desired – create the SaveParams object and populate.

var saveParams = new SaveParams() {TableName = "TableName"};

SAAS MAKER OPEN PLATFORM API

Page 46

Add row to save collection.

saveParams.AddRecord(dataRow, "PrimaryKeyColumn", SaveType.Insert, 0);

pluginManager.SaveRecords(saveParams);

Save a single existing record: Use this approach when you know you will be updating an
existing record

Get the record from the db and update column values.

var dataTable = PluginManager. GetRecordById(new GetParams() {KeyField = "fieldHoldingRecordId",

TableName = "TableName", RecordId = yourRecordId});

var dataRow = dataTable.Rows[0];

Update the columns as desired – create the SaveParams object.

var saveParams = new SaveParams() {TableName = "TableName"};

Add row to save collection.

saveParams.AddRecord(dataRow, "PrimaryKeyColumn", SaveType.Update, 0);

pluginManager.SaveRecords(saveParams);

Save a single record: Use this approach when you do not know if the operation will be
insert or update.

Get the record from the database and update column values.

var dataTable = PluginManager. GetRecordById(new GetParams() {KeyField = "fieldHoldingRecordId",

TableName = "TableName", RecordId = yourRecordId});

Create a data row resulting from the returned data table it will have one row for existing 0 for insert.

var operation = dtTask.Rows.Count == 0 ? SaveType.Insert : SaveType.Update;

var dataRow = operation == SaveType.Insert ? dtTask.NewRow():dtTask.Rows[0];

SAAS MAKER OPEN PLATFORM API

Page 47

Update the columns as desired - create the SaveParams object.

var saveParams = new SaveParams() {TableName = "TableName"};

Add row to save collection.

saveParams.AddRecord(dataRow, "PrimaryKeyColumn", operation, 0);

pluginManager.SaveRecords(saveParams);

Save many records in a single call: Use this approach when you wish to perform operations on

multiple records for the same DB table. You can insert update and delete in one call to SaveRecords method.

var dataTable = PluginManager. GetRecordById(new GetParams() {KeyField = "fieldHoldingRecordId",

TableName = "TableName", RecordId = yourRecordId});

var updateRec = dataTable.Rows[0];

Update the columns as desired.

var insertRow = dataTable.NewRow();

Enter column values for new row as desired.

var saveParams = new SaveParams() {TableName = "TableName"};

saveParams.AddRecord(updateRow, "PrimaryKeyColumn", SaveType.Update, yourRecordId);

saveParams.AddRecord(insertRow, "PrimaryKeyColumn", SaveType.Insert, 0);

pluginManager.SaveRecords(saveParams);

Checking the status of SaveRecords: The SaveRecords method returns a results object of type

SaveRecordsResult. This object informs the developer of the status of the call (Success or failure) and

provides a collection of Ids for effected records. If many records are being saved and an error is

encountered, the save process is aborted immediately after the error and result is returned.

SAAS MAKER OPEN PLATFORM API

Page 48

Use any of the save methodologies detailed above setting a local variable to the result

var result = pluginManager.SaveRcords(saveParams);

If(result.Status == SaveStatus.Failure)

{

 //If only a single record was passed to SaveRecords there is no need for this step

 //Check for multiple records

 //iterate through the recordIds that are returned

 foreach(long id in result.RecordIds)

 {

 If(id == 0)

 {

 //This is the record that failed order will correspond to order of the records

 collection passed to SaveRecords.

 }

 }

}

Permanently delete a single record: Use this approach when you want to delete a
record permanently.

var success = pluginManager.DeleteRecord("TableName", "PrimaryKeyColumn”, recordId);

if(!success)

{

 //Something went wrong handle it here

}

Move a single record to the recycle bin: Use this approach when you want to move a
record to the recycle bin.

var success = pluginManager.RecycleRecord ("TableName", "PrimaryKeyColumn”, recordId);

if(!success)

{

 //Something went wrong handle it here

}

SAAS MAKER OPEN PLATFORM API

Page 49

Check container privilege: While container privileges are enforced by the platform,
there are cases when it is advantageous to check them within the plugin code.

If(pluginManager.HasContainerPrivilege(“TableName”, recordPrimaryKey, ContainerPrivilege.CanEdit)

{

 //Logged in user has privilege to edit the record

}

Check custom plug-in privilege: Any number of custom plug-in privileges may be added
by the plug-in developer and assigned to roles in the platform. Check custom privileges for
the logged in user as follows:

If(pluginManager.HasPluginPrivilege (“PrivilegeName”)

{

 //Logged in user has privilege

}

SAAS MAKER OPEN PLATFORM API

Page 50

SaaS Maker Web Service Application Programming Interface (API)

DeleteRow(plGuid As String, TableName String, FieldName String, RecordID Long, bSingleItem Boolean)

Deletes one record from database table

Parameters:

1. TableName – name of Gizmo table

2. FiledName – name of Key field

3. RecordID - value of the Key

4. bSingleItem – if “true”, the record will be deleted physically; if “false” then item is deleted to SaaS

Maker™ RecycleBin

Returns True if row is deleted successfully, False if Row was not deleted

GetRecords(request WSGetDataRequest)

This method is used to get records from a database table.

Parameters: This function has only one parameter of type WSGetDataRequest which has the following

properties:

1. TableName – name of table from which data are retrieved

2. Key – The API key (plguid)

3. RecordID - value of the Key. RecordID can be “0” – in this case method returns all records in the

table if no filter is defined.

4. OnlyCurrentWorkshop – if “true”, the record will be retrieved from Current Workspace only

5. ExtensionData- This is a string that will be associated with the record as an “Attachment”

6. DataFilter- This property is of type TLTableConditionList and is used to filter and sort data.

Returns WSGetDataResponse, which has property StrData which holds the Serialized.NET Object “Dataset”.

SAAS MAKER OPEN PLATFORM API

Page 51

GetRecords method example using filter:

var filter = new PluginService.TLTableConditionList();

var conditions = new TLJoinerCondition[1];

conditions[0] = new TLJoinerCondition(){column = "InstanceAws_WorkGroupId", SQLCondition =

TLCondition.CondEQ, SQLParameters = new ArrayOfString(){_workGroupId.ToString() } };

filter.ConditionList = conditions;

 var response = _soapClient.GetRecords(new PluginService.WSGetDataRequest() {TableName =

 "InstanceAws", Key = _plGuid, DataFilter = filter});

 var dataSet = API.DeserializeDataset(response.StrData);

SaveRecord(request WSSaveDataRequest)

Saves one record to database table.

Parameters: This function has only one parameter of type WSSaveDataRequest which has the following

properties:

1. TableName- The name of the table.

2. Key – The API key (plguid).

3. RecordID - value of the Key. RecordID can be “0” – in this case method returns all records in the

table if no filter is defined.

4. ContainerHeader- Type of PluginService.ContainerData. If record is managed pass new

PluginService.ContainerData() else null.

5. StrData- This is serialized dataset object. It should only contain the one record to be

inserted/updated.

Returns WSSaveDataResponse, which has property RecordId which is the id of the saved record.

SAAS MAKER OPEN PLATFORM API

Page 52

GetPluginName(plGuid String)

Returns String, Gizmo name by plGUID.

GetSubDomain(plGuid String)

Returns String, Company name by plGUID.

GetPluginIcon(plGuid String)

Returns String, Relative Path to small icon image(see registration process) of Gizmo by GUID.

CheckPluginPermission(plGuid String, _ Permission_Name String)

Returns Boolean, true if currently logged on user has Gizmo Permission, which is defined by permission

name Permission_Name.

GetPluginIDByAttachmentID(plGuid String, Attachment_ID Long)

Returns Long, Gizmo ID –type long by given SaaS Maker™ Attachment ID – of type Long

(May be used in Gizmo, which works with groups of other Gizmos, like “SaaS Maker™ File Cabinet”)

GetPluginNameByAttachmentID(plGuid String, AttachmentID Long)

Returns String, Gizmo Name by given SaaS Maker™ Attachment ID – of type Long

(May be used in Gizmo, which works with groups of other Gizmos)

GetRecordIDByAttachmentID(plGuid String, Attachment_ID Long)

Parameter: AttachmentID – ID of SaaS Maker™ Attachment

Returns Long, Gizmo Item Main table Record ID - of type Long by given SaaS Maker™ Attachment ID – of

type Long (May be used in Gizmo, which works with groups of other Gizmos, like “SaaS Maker™ File

Cabinet”)

GetTHDbStuct(plGuid String)

Returns Byte[] of serialized XML, which keeps Gizmo databases structure

GetNewContainerURL(plGuid String, CategoryID Long)

Parameter: CategoryID - ID of SaaS Maker™ Category in which new Item Container will be inserted.

Returns String, which contains URL. This URL can be used by Gizmo to open SaaS Maker™ Container with

Gizmo item page in Container frame. This URL can be assigned in toolbar button “New” or link “New” on

Workspace page in order to User can create new Gizmo item in SaaS Maker™ Container.

SAAS MAKER OPEN PLATFORM API

Page 53

GetContainerURL(plGuid String, RecordID Long)

Parameter: RecordID – ID of record in main table of Gizmo

Returns String, which contains URL. This URL can be used by Gizmo to open SaaS Maker™ Container with

Gizmo item page in Container frame. This URL can be assigned in toolbar button “Edit” or link “Edit” on

Workspace page to allow user to modify existing Gizmo item in container.

GetCurrentWID(plGuid String)

Returns Long, ID of Current Workspace

GetContainerStatus(plGuid String, RecordID Long)

Returns Int current status of container by RecordID of Gizmo item record

GetUserName(plGuid String, UID Long) String

Returns String, Name of User by User ID

GetSpaceName(plGuid String, WID Long)

Returns String, Name of Workspace by Workspace ID

GetGroupName(plGuid String, GroupID Long)

Parameter: GroupID – of type Long, defines SaaS Maker™ Role ID

Returns String,SaaS Maker™ Role Name

GetSpaceUsers(plGuid String)

Returns Long[], ID of all Users in current SaaS Maker™ Workspace

GetSpaceGroups(plGuid String, WID Long)

Parameter: WID – of type Long, defines SaaS Maker™ Workspace ID

Returns Long[] –IDs of Roles in given Workspace

GetMyGroups(plGuid String)

Returns Long[] – ID of Roles for currently logged in User

GetMyPermissionMap(plGuid String, UId Long)

Parameter: UID – of type Long, defines SaaS Maker™ User

Returns Long[] , ID of Permissions for given User

SAAS MAKER OPEN PLATFORM API

Page 54

GetGroupPermissionMap(plGuid String, GroupID Long)

Parameter: GroupID – of type Long, defines SaaS Maker™ Role ID

Returns Long[] , ID of Permissions for given Role

GetSpaceOnlineUsers(plGuid String, UserId Long)

Returns Long[], ID of User currently being logged in SaaS Maker™

GetActiveSpaceGismos(plGuid String)

Returns Long[], ID of Gizmos currently available in current SaaS Maker™ workspace

Publishing your Plug-in

Publishing your plug-in consists of compiling your Visual Studio web application and preparing a

compressed .zip for registering the plug-in. This process is automated by the SDK and SaaS Maker™

framework. Publishing is as easy as clicking a button and viewing a log file. If errors occur during the build,

they will be recorded in the publish log to help you troubleshoot.

 Figure 6: Initiate publishing the plug-in

SAAS MAKER OPEN PLATFORM API

Page 55

Figure 6.1: Configure build properties and start the build

Figure 6.2: Review the publish results. Any build errors will be recorded here

SAAS MAKER OPEN PLATFORM API

Page 56

Figure 6.3: Output is published to the publish directory in the root of the SDK directory

Registering your Plug-in

To register your plug-in, log into the SaaS Maker™ Application with a developer account and while in

preview mode, navigate to Tools > Plug-in Manager. Click New, upload the .zip file that was output when you

published your plug-in and that’s it! SaaS Maker™ does the magic work of integrating your plug-in in the

platform. Your plug-in now has the honor of having become a SaaS Maker™ Gizmo! To add your new Gizmo

to the application, switch to design view and click the Gizmos icon. You will see your new Gizmo in the list of

available Gizmos. Here you can add the Gizmo to the application by selecting it and clicking Add.

CONCLUSIONS

Page 57

Conclusions

SaaS Maker™ applications are powerful tools that can quickly build from nothing to robust applications in

little time at a fraction of the cost of other SaaS applications. Users with no experience in programming can

use these tools to create business specific applications in a fraction of the time and investment it would take

to have a custom SaaS created by other services. Virtual Global stands behind SaaS Maker™ with award

winning customer service and can be contacted any time to assist developers and users with the application.

Visit http://virtualglobal.com/ to get started and see how a custom SaaS can take your business to new

heights.

http://virtualglobal.com/

APPENDIX 1: SAAS MAKER™ FEATURE LIST

Page 58

APPENDIX 1: SaaS Maker™ Feature List

3ÏÌɯÍÖÓÓÖÞÐÕÎɯÐÚɯÍÌÈÛÜÙÌɯÓÐÚÛɯÐÚɯÐÕÊÓÜËÌËɯÛÖɯÐÓÓÜÚÛÙÈÛÌɯ×ÓÈÛÍÖÙÔɯÔÈÛÜÙÐÛàȭɯ

/ÓÈÛÍÖÙÔɯÍÌÈÛÜÙÌÚɯÈÕËɯÔÖËÜÓÌÚɯÈÙÌɯÛÐÎÏÛÓàɯÐÕÛÌÎÙÈÛÌËɯÈÚɯ×ÈÙÛɯÖÍɯɁ×ÓÈÛÍÖÙÔɯÐÕÚÛÈÕÊÌÚɂɯÛÏÈÛɯÈÙÌɯËÌÓÐÝÌÙÌËɯÖÕɯ

ËÌÔÈÕËȭɯɯɯ

3ÁÁ3 -ÁËÅÒ &ÁÃÔÏÒÙ 4ÏÏÌÓ Ⱦ #ÌÏÕÄ)$%

3ÁÁ3 -ÁËÅÒ &ÁÃÔÏÒÙ ÉÓ !Î ÏÎÌÉÎÅ ÔÏÏÌËÉÔ ÔÏ ÈÅÌÐ ÄÅÖÅÌÏÐÅÒÓ ÔÏ ÂÕÉÌÄ ÁÎÄ ÄÅÐÌÏÙ ÃÕÓÔÏÍ 0ÁÁ3 ÁÎÄ

3ÁÁ3 ÓÏÌÕÔÉÏÎÓ ÏÎ ÔÏÐ ÏÆ ÔÈÅ ÐÌÁÔÆÏÒÍȟ ×ÉÔÈÏÕÔ ÐÒÏÇÒÁÍÍÉÎÇȡ

¶ !ÂÉÌÉÔÙ ÔÏ ÃÒÅÁÔÅ Á ÃÕÓÔÏÍ ÕÓÅÒ ÅØÐÅÒÉÅÎÃÅȟ ÉÎÃÌÕÄÉÎÇ 7ÅÂ ÐÁÇÅÓȟ ÓÔÏÒÅ-ÆÒÏÎÔȟ ÈÅÌÐ ÆÉÌÅȟ

ÌÉÃÅÎÓÅ ÆÉÌÅȟ ÃÕÓÔÏÍ ÅÍÁÉÌ ÎÏÔÉÆÉÃÁÔÉÏÎÓȟ ÅÔÃȢ

¶ !ÂÉÌÉÔÙ ÔÏ ÃÒÅÁÔÅ ÃÕÓÔÏÍ ÄÁÔÁ ÅÎÔÒÙ ÆÏÒÍÓ

¶ !ÂÉÌÉÔÙ ÔÏ ÅÎÁÂÌÅȾÄÉÓÁÂÌÅ ÐÌÁÔÆÏÒÍ ÆÅÁÔÕÒÅÓ ÂÁÓÅÄ ÏÎ ÎÅÅÄÓ

¶ !ÂÉÌÉÔÙ ÔÏ ÉÎÓÔÁÌÌȾÕÎÉÎÓÔÁÌÌ ÒÅÕÓÁÂÌÅ ÍÏÄÕÌÅÓ

¶ !ÂÉÌÉÔÙ ÔÏ ÃÕÓÔÏÍÉÚÅ ÒÅÐÏÒÔÓȟ ×ÏÒËÆÌÏ×Óȟ ÅÔÃȢ

¶ !ÂÉÌÉÔÙ ÔÏ ÐÕÂÌÉÓÈ 3ÁÁ3 ÁÐÐÓ ÆÏÒ "ά"ȟ "ά#ȟ ÏÒ ÅÎÄ-ÕÓÅÒ 3ÁÁ3ȟ ÆÏÒ ÍÕÌÔÉ-ÕÓÅÒ ÓÁÌÅȟ ÃÏÎÓÕÍÅÒ

ÓÁÌÅȟ ÏÒ ÁÄ-ÓÕÐÐÏÒÔÅÄ ÍÏÄÅÌȢ

#ÏÎÓÏÌÉÄÁÔÅÄ 0ÌÁÔÆÏÒÍ 3ÅÒÖÉÃÅÓ

&ÏÒÍÓȾ2ÅÃÏÒÄ -ÁÎÁÇÅÍÅÎÔ - !ÂÉÌÉÔÙ ÔÏ ÃÒÅÁÔÅ ÄÁÔÁ ÅÎÔÒÙ ÆÏÒÍÓȠ ÒÏÕÔÅȟ ÔÒÁÃË ÁÎÄ ÒÅÐÏÒÔ ÏÎ ÆÏÒÍ

ÄÁÔÁȟ ×ÉÔÈ ÉÎÔÅÇÒÁÔÅÄ ÓÕÐÐÏÒÔ ÆÏÒ ÁÔÔÁÃÈÍÅÎÔÓ ÁÎÄ ×ÏÒËÆÌÏ×Ȣ 4ÈÅ ÆÏÒÍÓ ÅÎÇÉÎÅ ÉÓ ÉÎÔÅÇÒÁÔÅÄ ×ÉÔÈ

ÔÈÅ 2"!#ȟ ÓÅÁÒÃÈ ÁÎÄ ÒÅÐÏÒÔÉÎÇ ÅÎÇÉÎÅÓ ÆÏÒ ÄÅÐÌÏÙÉÎÇ ÍÕÌÔÉ-ÔÅÎÁÎÔ ÁÐÐÓȢ

0ÒÅÓÅÎÃÅ !×ÁÒÅÎÅÓÓ - !ÂÉÌÉÔÙ ÆÏÒ ÕÓÅÒÓ ÔÏ ÓÅÅ ×ÈÏȭÓ ÌÏÇÇÅÄ ÏÎȢ

3ÅÁÒÃÈ 3ÅÒÖÉÃÅÓ - !ÂÉÌÉÔÙ ÔÏ ÓÅÁÒÃÈ ÂÙ ÆÕÌÌ ÔÅØÔȟ ÃÏÎÔÅÎÔ ÔÙÐÅ ɉÒÅÃÏÒÄȟ ÔÁÓËȟ ÃÏÎÔÁÃÔȟ ÅÔÃȢɊȟ ÃÏÎÔÅÎÔ

Ï×ÎÅÒȟ ×ÏÒËÓÐÁÃÅȟ ÏÒ ÇÌÏÂÁÌ ÓÅÁÒÃÈ ÏÒ ÓÅÁÒÃÈ ÂÙ ÄÁÔÅ ÒÁÎÇÅȢ

7ÏÒËÆÌÏ× 3ÅÒÖÉÃÅÓ - !ÂÉÌÉÔÙ ÔÏ ÉÍÐÌÅÍÅÎÔ ÃÕÓÔÏÍ ÂÕÓÉÎÅÓÓ ÐÒÏÃÅÓÓÅÓȢ

(ÉÓÔÏÒÉÃÁÌ !ÕÄÉÔ 4ÒÁÉÌ - 4ÒÁÃË ÃÈÁÎÇÅÓ ÔÏ ÒÅÃÏÒÄÓ ÂÙ ÕÓÅÒȟ ÄÁÔÅȟ ÅÔÃȢ

&ÉÌÅ -ÁÎÁÇÅÒ ɉ2ÅÐÏÓÉÔÏÒÙ 3ÅÒÖÉÃÅÓɊ -)ÎÔÅÇÒÁÔÅÄ ÆÉÌÅ ÍÁÎÁÇÅÒȟ ×ÉÔÈ ÖÅÒÓÉÏÎ ÔÒÁÃËÉÎÇȢ

#ÏÍÍÏÎ 3ÅÃÕÒÉÔÙ -ÏÄÅÌ

!ÕÔÈÅÎÔÉÃÁÔÉÏÎ 3ÅÒÖÉÃÅÓ - 5ÓÅÒ)$ȾÐÁÓÓ×ÏÒÄ ÁÕÔÈÅÎÔÉÃÁÔÉÏÎȟ ÐÁÓÓ×ÏÒÄ ÒÅÔÒÉÅÖÁÌȟ ÃÈÁÎÇÅ

ÐÁÓÓ×ÏÒÄÓ ÁÎÄ ÔÉÍÅÏÕÔÓȠ !ÌÌÏ× ÔÈÅ ÁÄÍÉÎÉÓÔÒÁÔÏÒ ÔÏ ÓÐÅÃÉÆÙ ÁÕÔÈÅÎÔÉÃÁÔÉÏÎ ÔÙÐÅ ɉÓÔÒÏÎÇ

ÐÁÓÓ×ÏÒÄÓȟ ÏÐÔÉÏÎÁÌ 23! ÔÏËÅÎ ÓÕÐÐÏÒÔȟ ÅÔÃȢɊȟ ÁÎÄ ÐÁÓÓ×ÏÒÄ ÒÅÓÅÔȢ

'ÌÏÂÁÌ 2ÏÌÅ-ÂÁÓÅÄ !ÃÃÅÓÓ #ÏÎÔÒÏÌ ɉ2"!#Ɋ 3ÅÒÖÉÃÅÓ ɀ 5ÓÅÒ-ÄÅÆÉÎÅÄ ÒÏÌÅȾÐÒÉÖÉÌÅÇÅ ÐÁÉÒÓ ÆÏÒ

APPENDIX 1: SAAS MAKER™ FEATURE LIST

Page 59

ÃÏÎÔÒÏÌÌÉÎÇ ÁÃÃÅÓÓ ÔÏ ÔÏÏÌÓ ÁÎÄ ÓÙÓÔÅÍ ÆÅÁÔÕÒÅÓȢ

7ÏÒËÓÐÁÃÅ 2"!#3ÅÒÖÉÃÅÓ ɀ 3ÅÐÁÒÁÔÅ 2ÏÌÅ-ÂÁÓÅÄ 3ÅÃÕÒÉÔÙ ÆÏÒ ÅÁÃÈ ×ÏÒËÓÐÁÃÅ ÉÎ Á ÍÕÌÔÉ-ÔÅÎÁÎÔ

ÅÎÖÉÒÏÎÍÅÎÔȢ

2Ï×-ÌÅÖÅÌ ÓÅÃÕÒÉÔÙ ɀ !ÂÉÌÉÔÙ ÔÏ ÃÏÎÔÒÏÌ ÒÅÁÄȾÍÏÄÉÆÙȾÄÅÌÅÔÅ ÐÒÉÖÉÌÅÇÅÓ ÁÔ ÔÈÅ ÒÅÃÏÒÄ ÌÅÖÅÌȢ

7ÏÒËÓÐÁÃÅ ɉ4ÅÎÁÎÔɊ -ÁÎÁÇÅÍÅÎÔ 3ÅÒÖÉÃÅÓ

)ÎÃÏÒÐÏÒÁÔÅÓ Á ÌÏÇÉÃÁÌ ÓÅÐÁÒÁÔÉÏÎ ÏÆ ÕÓÅÒ ÇÒÏÕÐÓ ×ÉÔÈÉÎ Á ÍÕÌÔÉ-ÕÓÅÒ ÉÍÐÌÅÍÅÎÔÁÔÉÏÎȟ ÓÕÃÈ ÔÈÁÔ ÎÏ

ÏÎÅ ÕÓÅÒ ɉÏÒ ÇÒÏÕÐ ÏÆ ÕÓÅÒÓɊ ÃÁÎ ÁÃÃÅÓÓ ÄÁÔÁ ÏÒ ÆÕÎÃÔÉÏÎÓ ÔÈÁÔ ȰÂÅÌÏÎÇȱ ÔÏ ÁÎÏÔÈÅÒ ÕÓÅÒȟ ÅØÃÅÐÔ ÁÓ

ÅØÐÌÉÃÉÔÌÙ ÇÒÁÎÔÅÄȢ

$ÁÔÁ -ÁÎÁÇÅÍÅÎÔ 3ÅÒÖÉÃÅÓ

%ÎÓÕÒÅÓ ÔÈÁÔ ÎÏ 3ÁÁ3 -ÁËÅÒ ÍÏÄÕÌÅ ÃÁÎ ÂÅ ÃÒÅÁÔÅÄ ÔÈÁÔ ÕÓÅÓ ÔÈÅ !0) ÔÏ ×ÒÏÎÇÆÕÌÌÙ ÉÎÔÅÒÁÃÔ ×ÉÔÈ

ÔÈÅ ÕÎÄÅÒÌÙÉÎÇ 31, ÄÁÔÁÂÁÓÅȢ 4ÈÁÔ ÉÓȟ 3ÁÁ3 -ÁËÅÒ ÍÏÄÕÌÅÓ ÁÒÅ ÎÏÔ ÐÅÒÍÉÔÔÅÄ ÄÉÒÅÃÔ ÁÃÃÅÓÓ ÔÏ ÔÈÅ

ÕÎÄÅÒÌÙÉÎÇ ÄÁÔÁÂÁÓÅ ×ÉÔÈÏÕÔ ȰÇÏÉÎÇ ÐÁÓÔȱ ÔÈÅ ÄÁÔÁ ÍÁÎÁÇÅÍÅÎÔ ÌÁÙÅÒȟ ×ÈÉÃÈ ÓÅÒÖÅÓ ÁÓ Á ÇÁÔÅËÅÅÐÅÒȢ

2ÅÍÏÔÅ !ÄÍÉÎÉÓÔÒÁÔÉÏÎ #ÏÎÓÏÌÅ

)ÎÓÔÁÎÃÅ -ÁÎÁÇÅÍÅÎÔ ɀ !ÌÌÏ×Ó ÆÏÒ ÐÌÁÔÆÏÒÍ ÉÎÓÔÁÎÃÅÓ ÔÏ ÂÅ ÃÒÅÁÔÅÄ ÁÎÄ ÄÅÓÔÒÏÙÅÄ ÏÎ ÄÅÍÁÎÄȢ

7ÏÒËÓÐÁÃÅ -ÁÎÁÇÅÍÅÎÔ ɀ !ÌÌÏ×Ó ÆÏÒ ×ÏÒËÓÐÁÃÅÓ ÔÏ ÂÅ ÃÒÅÁÔÅÄȟ ÄÅÓÔÒÏÙÅÄȟ ÃÕÓÔÏÍÉÚÅÄ ÁÎÄ

ÏÔÈÅÒ×ÉÓÅ ÍÁÎÁÇÅÄȢ

5ÓÅÒ -ÁÎÁÇÅÍÅÎÔ ɀ !ÌÌÏ×Ó ÆÏÒ ÕÓÅÒÓ ÔÏ ÂÅ ÁÄÄÅÄȟ ÍÏÄÉÆÉÅÄ ÁÎÄ ÄÉÓÁÂÌÅÄȠ ÉÎÃÌÕÄÉÎÇ ÐÁÓÓ×ÏÒÄ

ÍÁÎÁÇÅÍÅÎÔȢ

3ÅÃÕÒÉÔÙ -ÁÎÁÇÅÍÅÎÔ ɉ2"!#Ⱦ2Ï×-ÌÅÖÅÌ 3ÅÃÕÒÉÔÙɊ ɀ !ÌÌÏ×Ó ÆÏÒ ÒÏÌÅȾÕÓÅÒȾÐÒÉÖÉÌÅÇÅÓ ÔÏ ÂÅ ÁÄÄÅÄ

ÁÎÄ ÍÁÎÁÇÅÄȢ

0ÌÁÔÆÏÒÍ 5ÔÉÌÉÔÉÅÓ

2ÅÐÏÒÔ $ÅÓÉÇÎÅÒ ɀ !ÂÉÌÉÔÙ ÔÏ ÃÒÅÁÔÅ ÂÕÓÉÎÅÓÓ ÉÎÔÅÌÌÉÇÅÎÃÅ ÒÅÐÏÒÔÓȟ ×ÈÉÃÈ ÁÒÅ ÉÎÔÅÇÒÁÔÅÄ ÁÎÄ

ÃÏÎÔÒÏÌÌÅÄ ÂÙ ÔÈÅ ÓÅÃÕÒÉÔÙ ÍÏÄÅÌȠ ÁÎÄ ×ÈÉÃÈ ÁÒÅ ÁÃÃÅÓÓÉÂÌÅ ÂÙ ÔÈÅ ÒÅÃÏÒÄÓ ÍÁÎÁÇÅÍÅÎÔ ÅÎÇÉÎÅȢ

") $ÅÓÉÇÎÅÒ - !ÂÉÌÉÔÙ ÔÏ ÃÒÅÁÔÅ ÂÕÓÉÎÅÓÓ ÉÎÔÅÌÌÉÇÅÎÃÅ ÒÅÐÏÒÔÓȟ ×ÈÉÃÈ ÁÒÅ ÉÎÔÅÇÒÁÔÅÄ ÁÎÄ ÃÏÎÔÒÏÌÌÅÄ

ÂÙ ÔÈÅ ÓÅÃÕÒÉÔÙ ÍÏÄÅÌȠ ÁÎÄ ×ÈÉÃÈ ÁÒÅ ÁÃÃÅÓÓÉÂÌÅ ÂÙ ÔÈÅ ÒÅÃÏÒÄÓ ÍÁÎÁÇÅÍÅÎÔ ÅÎÇÉÎÅȢ

7ÏÒËÆÌÏ× $ÅÓÉÇÎÅÒ ɀ !ÂÉÌÉÔÙ ÔÏ ÃÒÅÁÔÅ ×ÏÒËÆÌÏ×Óȟ ×ÈÉÃÈ ÁÒÅ ÉÎÔÅÇÒÁÔÅÄ ÁÎÄ ÃÏÎÔÒÏÌÌÅÄ ÂÙ ÔÈÅ

ÓÅÃÕÒÉÔÙ ÍÏÄÅÌȠ ÁÎÄ ×ÈÉÃÈ ÁÒÅ ÁÃÃÅÓÓÉÂÌÅ ÂÙ ÔÈÅ ÒÅÃÏÒÄÓ ÍÁÎÁÇÅÍÅÎÔ ÅÎÇÉÎÅȢ

&ÏÒÍÓȾ$" $ÅÓÉÇÎÅÒ ɀ !ÂÉÌÉÔÙ ÔÏ ÃÒÅÁÔÅ ÁÎÄ ÍÁÎÁÇÅ ÄÁÔÁÂÁÓÅ-ÄÒÉÖÅÎ ÆÏÒÍÓȟ ×ÈÉÃÈ ÁÒÅ ÉÎÔÅÇÒÁÔÅÄ

ÁÎÄ ÃÏÎÔÒÏÌÌÅÄ ÂÙ ÔÈÅ ÓÅÃÕÒÉÔÙ ÍÏÄÅÌȠ ÁÎÄ ×ÈÉÃÈ ÁÒÅ ÁÃÃÅÓÓÉÂÌÅ ÂÙ ÔÈÅ ÒÅÐÏÒÔÉÎÇ ÁÎÄ ") ÅÎÇÉÎÅÓȢ

'ÒÁÐÈÉÃÁÌ 5ÓÅÒ)ÎÔÅÒÆÁÃÅ

APPENDIX 1: SAAS MAKER™ FEATURE LIST

Page 60

'ÒÁÐÈÉÃÁÌ 5ÓÅÒ)ÎÔÅÒÆÁÃÅ ɀ ! ÐÏÒÔÁÌ-ÌÉËÅ ÕÓÅÒ ÉÎÔÅÒÆÁÃÅ ÆÏÒ ÁÃÃÅÓÓÉÎÇ !ÄÍÉÎ ÆÕÎÃÔÉÏÎÓȠ ÁÎÄ ÆÏÒ

ȰÒÕÎÎÉÎÇȱ 3ÁÁ3 -ÁËÅÒ ÍÏÄÕÌÅÓ ÁÓ Á ÖÉÓÕÁÌÌÙ ÉÎÔÅÇÒÁÔÅÄ ÓÙÓÔÅÍȢ 4ÈÅ 3ÁÁ3 -ÁËÅÒ '5) ÐÒÏÖÉÄÅÓ Á

ÃÏÍÍÏÎ ÕÓÅÒ ÅØÐÅÒÉÅÎÃÅ ÔÈÁÔ ÍÁËÅÓ ÒÅÓÕÌÔÉÎÇ ÓÏÆÔ×ÁÒÅ ÅÁÓÉÅÒ ÔÏ ÕÓÅȢ

/ÐÅÎ 0ÌÁÔÆÏÒÍ

"ÒÏ×ÓÅÒ)ÎÄÅÐÅÎÄÅÎÃÅ - 4ÈÅ ÐÌÁÔÆÏÒÍ ×ÏÒËÓ ×ÉÔÈ &ÉÒÅÆÏØ ήȢØȟ 3ÁÆÁÒÉ ίȢØȟ)ÎÔÅÒÎÅÔ %ØÐÌÏÒÅÒ ΰ ÁÎÄ

ÌÁÔÅÒȟ ÁÎÄ 'ÏÏÇÌÅ #ÈÒÏÍÅ ΫΪ ÁÎÄ ÌÁÔÅÒȢ

/ÐÅÎ !0) -)ÎÃÏÒÐÏÒÁÔÅÓ Á ÐÒÏÇÒÁÍÍÁÂÌÅ ÉÎÔÅÒÆÁÃÅ ÆÏÒ ȰÔÉÇÈÔÌÙ ÉÎÔÅÇÒÁÔÉÎÇȱ ÅØÉÓÔÉÎÇ 7ÅÂ ÁÐÐÓ ÁÎÄ

ÓÅÒÖÉÃÅÓȢ 4Ï ȰÔÉÇÈÔÌÙ ÉÎÔÅÇÒÁÔÅȱ ÁÌÌÏ×Ó ÆÏÒ ÔÈÅ ÃÒÅÁÔÉÏÎ ÏÆ ÓÙÓÔÅÍÓȟ ÖÅÒÓÕÓ ÓÉÍÐÌÅ ÐÏÒÔÁÌÓȟ ÁÎÄ

ÒÅÑÕÉÒÅÓ ÆÕÎÃÔÉÏÎÓ ÆÏÒ ÉÎÔÅÒÆÁÃÉÎÇ ×ÉÔÈ ÏÔÈÅÒ ÐÌÕÇ-ÉÎÓ ÁÎÄ ÄÁÔÁ ×ÉÔÈÉÎ ÔÈÅ ÓÙÓÔÅÍȟ ÁÓ ÄÅÆÉÎÅÄ ÂÙ ÔÈÅ

ÓÅÃÕÒÉÔÙ ÄÅÆÉÎÉÔÉÏÎÓȢ 4ÈÅ ÉÎÔÅÒÆÁÃÅ ÓÈÏÕÌÄ ./4 ÒÅÌÙ ÏÎ -ÉÃÒÏÓÏÆÔ Ȱ5ÓÅÒ #ÏÎÔÒÏÌÓȱȟ Ȱ7ÅÂ 0ÁÒÔÓȱȟ

Ȱ#/-ȱȟ ÏÒ ÏÔÈÅÒ ÐÒÏÐÒÉÅÔÁÒÙ ÏÂÊÅÃÔ ÔÅÃÈÎÏÌÏÇÉÅÓȢ 2ÁÔÈÅÒȟ ÉÔ ÓÈÏÕÌÄ ×ÏÒË ÏÖÅÒ ÒÅÇÕÌÁÒ 7ÅÂ ÓÅÒÖÉÃÅÓ

ÆÒÏÍ Á ÖÁÒÉÅÔÙ ÏÆ ÓÏÆÔ×ÁÒÅ ÌÁÎÇÕÁÇÅÓȢ

)ÎÔÅÇÒÁÔÅÄ -ÏÄÕÌÅÓ -)ÎÃÌÕÄÅÓ Á ÃÏÒÅ ÓÅÔ ÏÆ ÄÅÆÁÕÌÔ ÍÏÄÕÌÅÓ ÆÏÒ ÔÅÁÍ ÍÁÎÁÇÅÍÅÎÔȟ ÃÏÌÌÁÂÏÒÁÔÉÏÎ

ÁÎÄ ÄÏÃÕÍÅÎÔ ÒÅÐÏÓÉÔÏÒÙȢ)ÎÃÌÕÄÅ ÉÎÔÅÇÒÁÔÅÄ ÍÏÄÕÌÅÓ ÆÏÒ ÃÈÁÔȟ ÃÁÌÅÎÄÁÒȟ ÄÉÓÃÕÓÓÉÏÎȟ ÍÁÉÌȟ ÔÁÓË

ÍÁÎÁÇÅÍÅÎÔȟ ÅÔÃȢ)ÎÃÌÕÄÅÓ ÉÎÔÅÇÒÁÔÅÄ ×ÅÂ ÓÅÒÖÉÃÅÓ ÔÏ ÄÅÍÏÎÓÔÒÁÔÅ ÔÈÅ !0)ȟ ÓÕÃÈ ÁÓ 'ÏÏÇÌÅ

ÌÁÎÇÕÁÇÅ ÔÒÁÎÓÌÁÔÉÏÎ ÓÅÒÖÉÃÅȟ 6.# ÒÅÍÏÔÅ ÄÅÓËÔÏÐȟ ÁÎÄ !ÌÆÒÅÓÃÏ ÄÏÃÕÍÅÎÔ ÒÅÐÏÓÉÔÏÒÙȢ

%ÎÔÅÒÐÒÉÓÅ %ÎÁÂÌÅÄ

"ÁÃË-ÅÎÄ 3ÃÁÌÁÂÉÌÉÔÙ - 3ÃÁÌÁÂÌÅ ÔÏ ÁÃÃÏÍÍÏÄÁÔÅ ÌÁÒÇÅ ÎÕÍÂÅÒÓ ÏÆ ÕÓÅÒÓ ÁÎÄ ÈÅÁÖÙ ÕÓÁÇÅ ÌÏÁÄÓ

×ÉÔÈ ΫΪΪÓ ÏÆ ÔÈÏÕÓÁÎÄÓ ÏÆ 3ÁÁ3 ÓÙÓÔÅÍÓȟ ÍÉÌÌÉÏÎÓ ÏÆ ÅÎÄ ÕÓÅÒÓ ÁÎÄ ÌÁÒÇÅ ÒÅÃÏÒÄ ÓÅÔÓȢ

&ÒÏÎÔ-ÅÎÄ 3ÃÁÌÁÂÉÌÉÔÙ ɀ)ÍÐÌÅÍÅÎÔ ȰÐÁÇÉÎÇȱȟ ÄÒÉÌÌÄÏ×ÎÓ ÁÎÄ ÌÏÏËÕÐÓ ÆÏÒ ÌÉÓÔÓȢ

#ÏÓÔ 3ÃÁÌÁÂÉÌÉÔÙ ɀ !ÖÁÉÌÁÂÌÅ ÆÏÒ ÆÒÅÅ &ÉÒÅÂÉÒÄ 31,Ȣ 31, 3ÅÒÖÅÒ ÏÒ /ÒÁÃÌÅ ÄÁÔÁÂÁÓÅ ÁÌÓÏ ÁÖÁÉÌÁÂÌÅȢ

$ÅÓËÔÏÐ)ÎÔÅÇÒÁÔÉÏÎ

3ÁÁ3 -ÁËÅÒ ÁÌÓÏ ÉÎÃÌÕÄÅÓ ÆÅÁÔÕÒÅÓ ÆÏÒ -3 /ÕÔÌÏÏËȟ -3 0ÒÏÊÅÃÔ ÓÙÎÃ ÁÎÄ -3 7ÉÎÄÏ×Ó $ÅÓËÔÏÐ

ÉÎÔÅÇÒÁÔÉÏÎȢ

Page 61

